Câbles d’acier

6 X 7 (1+6) fils

<table>
<thead>
<tr>
<th>Diam. câble (pouces)</th>
<th>Diam. fil ext. (mm)</th>
<th>Poids par 100 m (kg)</th>
<th>Code art.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>0,2</td>
<td>1,3</td>
<td>257</td>
</tr>
<tr>
<td>1/16</td>
<td>0,33</td>
<td>4,3</td>
<td>578</td>
</tr>
<tr>
<td>1/4</td>
<td>0,4</td>
<td>4,9</td>
<td>1026</td>
</tr>
<tr>
<td>5</td>
<td>0,5</td>
<td>7,7</td>
<td>1600</td>
</tr>
<tr>
<td>6</td>
<td>0,65</td>
<td>13,1</td>
<td>2400</td>
</tr>
<tr>
<td>7</td>
<td>0,7</td>
<td>18</td>
<td>3250</td>
</tr>
<tr>
<td>3/16</td>
<td>0,85</td>
<td>22</td>
<td>4300</td>
</tr>
<tr>
<td>9</td>
<td>0,95</td>
<td>28</td>
<td>5400</td>
</tr>
<tr>
<td>3/8</td>
<td>1,05</td>
<td>34</td>
<td>6650</td>
</tr>
<tr>
<td>11</td>
<td>1,15</td>
<td>41</td>
<td>7400</td>
</tr>
<tr>
<td>1/2</td>
<td>1,2</td>
<td>25</td>
<td>8500</td>
</tr>
<tr>
<td>13</td>
<td>1,35</td>
<td>56</td>
<td>10000</td>
</tr>
<tr>
<td>9/16</td>
<td>1,5</td>
<td>70</td>
<td>12500</td>
</tr>
<tr>
<td>5/8</td>
<td>1,7</td>
<td>89</td>
<td>16100</td>
</tr>
<tr>
<td>3/4</td>
<td>2</td>
<td>124</td>
<td>22000</td>
</tr>
<tr>
<td>7/8</td>
<td>2,35</td>
<td>172</td>
<td>30700</td>
</tr>
</tbody>
</table>

7 X 7 (1+6) fils

<table>
<thead>
<tr>
<th>Diam. câble (pouces)</th>
<th>Diam. fil ext. (mm)</th>
<th>Poids par 100 m (kg)</th>
<th>Code art.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>0,15</td>
<td>0,9</td>
<td>160</td>
</tr>
<tr>
<td>1,5</td>
<td>0,18</td>
<td>1,2</td>
<td>235</td>
</tr>
<tr>
<td>2</td>
<td>0,2</td>
<td>1,5</td>
<td>290</td>
</tr>
<tr>
<td>2,5</td>
<td>0,25</td>
<td>2,4</td>
<td>450</td>
</tr>
<tr>
<td>3/16</td>
<td>0,33</td>
<td>3,5</td>
<td>650</td>
</tr>
<tr>
<td>3,6</td>
<td>0,35</td>
<td>5,1</td>
<td>930</td>
</tr>
<tr>
<td>1/16</td>
<td>0,4</td>
<td>6,3</td>
<td>1150</td>
</tr>
<tr>
<td>5</td>
<td>0,5</td>
<td>9,8</td>
<td>1800</td>
</tr>
<tr>
<td>1/4</td>
<td>0,65</td>
<td>14,1</td>
<td>2800</td>
</tr>
<tr>
<td>7</td>
<td>0,7</td>
<td>19,3</td>
<td>3500</td>
</tr>
<tr>
<td>3/16</td>
<td>0,85</td>
<td>25,2</td>
<td>4600</td>
</tr>
<tr>
<td>9</td>
<td>0,95</td>
<td>31,8</td>
<td>5800</td>
</tr>
<tr>
<td>3/8</td>
<td>1,05</td>
<td>39,3</td>
<td>7200</td>
</tr>
<tr>
<td>1/2</td>
<td>1,2</td>
<td>58</td>
<td>12000</td>
</tr>
<tr>
<td>9/16</td>
<td>1,5</td>
<td>77</td>
<td>14000</td>
</tr>
<tr>
<td>5/8</td>
<td>1,7</td>
<td>99</td>
<td>17900</td>
</tr>
</tbody>
</table>

Charge de rupture théorique = charge de rupture effective x 1.176

Utilisation :
- Traction, transmission.
- Gréement dormant.

6 X 12 fils

<table>
<thead>
<tr>
<th>Diam. câble (pouces)</th>
<th>Diam. fil ext. (mm)</th>
<th>Poids par 100 m (kg)</th>
<th>Code art.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/16</td>
<td>0,45</td>
<td>15,3</td>
<td>2100</td>
</tr>
<tr>
<td>10</td>
<td>0,55</td>
<td>23</td>
<td>3100</td>
</tr>
<tr>
<td>1/2</td>
<td>0,65</td>
<td>32</td>
<td>4400</td>
</tr>
<tr>
<td>9/16</td>
<td>0,75</td>
<td>43</td>
<td>5900</td>
</tr>
<tr>
<td>5/8</td>
<td>0,85</td>
<td>55</td>
<td>7600</td>
</tr>
<tr>
<td>9/8</td>
<td>0,95</td>
<td>68</td>
<td>9400</td>
</tr>
<tr>
<td>20</td>
<td>1,05</td>
<td>83</td>
<td>11600</td>
</tr>
<tr>
<td>7/8</td>
<td>1,2</td>
<td>109</td>
<td>15100</td>
</tr>
<tr>
<td>24</td>
<td>1,25</td>
<td>118</td>
<td>16400</td>
</tr>
</tbody>
</table>

Charge de rupture théorique = charge de rupture effective x 1.11

Utilisation :
- Batellerie.
- Travaux publics.

6 X 15 fils

<table>
<thead>
<tr>
<th>Diam. câble (pouces)</th>
<th>Diam. fil ext. (mm)</th>
<th>Poids par 100 m (kg)</th>
<th>Code art.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/16</td>
<td>0,45</td>
<td>15,3</td>
<td>2100</td>
</tr>
<tr>
<td>10</td>
<td>0,55</td>
<td>23</td>
<td>3100</td>
</tr>
<tr>
<td>1/2</td>
<td>0,65</td>
<td>32</td>
<td>4400</td>
</tr>
<tr>
<td>9/16</td>
<td>0,75</td>
<td>43</td>
<td>5900</td>
</tr>
<tr>
<td>5/8</td>
<td>0,85</td>
<td>55</td>
<td>7600</td>
</tr>
<tr>
<td>9/8</td>
<td>0,95</td>
<td>68</td>
<td>9400</td>
</tr>
<tr>
<td>20</td>
<td>1,05</td>
<td>83</td>
<td>11600</td>
</tr>
<tr>
<td>7/8</td>
<td>1,2</td>
<td>109</td>
<td>15100</td>
</tr>
<tr>
<td>24</td>
<td>1,25</td>
<td>118</td>
<td>16400</td>
</tr>
</tbody>
</table>

Charge de rupture théorique = charge de rupture effective x 1.11

Utilisation :
- Batellerie.
Câbles d’acier

6 X 19 (1+6+12) fils + 1 Ame en acier

GALVANISE

<table>
<thead>
<tr>
<th>Diam. câble</th>
<th>Diam. fil ext.</th>
<th>Poids par 100 m</th>
<th>Charge de rupture effective mini*</th>
<th>Code art.</th>
</tr>
</thead>
<tbody>
<tr>
<td>pouces</td>
<td>mm</td>
<td>mm</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>1/8</td>
<td>3</td>
<td>0,25</td>
<td>3</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,3</td>
<td>5,4</td>
<td>975</td>
</tr>
<tr>
<td>3/16</td>
<td>5</td>
<td>0,35</td>
<td>8,4</td>
<td>1525</td>
</tr>
<tr>
<td>1/4</td>
<td>6</td>
<td>0,4</td>
<td>12</td>
<td>2195</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0,45</td>
<td>16</td>
<td>3000</td>
</tr>
<tr>
<td>5/16</td>
<td>8</td>
<td>0,5</td>
<td>22</td>
<td>3900</td>
</tr>
<tr>
<td>3/8</td>
<td>9</td>
<td>0,55</td>
<td>28</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,65</td>
<td>34</td>
<td>6150</td>
</tr>
<tr>
<td>7/16</td>
<td>11</td>
<td>0,7</td>
<td>40</td>
<td>7400</td>
</tr>
<tr>
<td>1/2</td>
<td>12</td>
<td>0,75</td>
<td>48</td>
<td>8800</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0,8</td>
<td>52</td>
<td>9550</td>
</tr>
<tr>
<td>9/16</td>
<td>14</td>
<td>0,9</td>
<td>66</td>
<td>12000</td>
</tr>
<tr>
<td>15</td>
<td>0,95</td>
<td>76</td>
<td>13730</td>
<td></td>
</tr>
<tr>
<td>5/8</td>
<td>16</td>
<td>1</td>
<td>86</td>
<td>15700</td>
</tr>
<tr>
<td>3/4</td>
<td>18</td>
<td>1,1</td>
<td>112</td>
<td>19900</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1,25</td>
<td>135</td>
<td>24600</td>
</tr>
<tr>
<td>7/8</td>
<td>22</td>
<td>1,35</td>
<td>163</td>
<td>29700</td>
</tr>
</tbody>
</table>

*Classe 180/199/kg/mm²

Charge de rupture théorique = charge de rupture effective x 1.162

Utilisation:
- Appareils de levage.
- Palans, treuils, ponts.

7 X 19 (1+6+12) fils + 1 Ame en acier

GALVANISE

<table>
<thead>
<tr>
<th>Diam. câble</th>
<th>Diam. fil ext.</th>
<th>Poids par 100 m</th>
<th>Charge de rupture effective mini*</th>
<th>Code art.</th>
</tr>
</thead>
<tbody>
<tr>
<td>pouces</td>
<td>mm</td>
<td>mm</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>1/8</td>
<td>3</td>
<td>0,2</td>
<td>3</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,25</td>
<td>6</td>
<td>1070</td>
</tr>
<tr>
<td>4,5</td>
<td>5</td>
<td>0,3</td>
<td>7</td>
<td>1220</td>
</tr>
<tr>
<td>3/16</td>
<td>5</td>
<td>0,33</td>
<td>9</td>
<td>1670</td>
</tr>
<tr>
<td>1/4</td>
<td>6</td>
<td>0,4</td>
<td>13</td>
<td>2400</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0,45</td>
<td>19</td>
<td>3280</td>
</tr>
<tr>
<td>5/16</td>
<td>8</td>
<td>0,5</td>
<td>25</td>
<td>4250</td>
</tr>
<tr>
<td>3/8</td>
<td>9</td>
<td>0,6</td>
<td>31</td>
<td>5400</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,65</td>
<td>38</td>
<td>6700</td>
</tr>
<tr>
<td>7/16</td>
<td>11</td>
<td>0,7</td>
<td>46</td>
<td>8100</td>
</tr>
<tr>
<td>1/2</td>
<td>12</td>
<td>0,8</td>
<td>55</td>
<td>9600</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0,85</td>
<td>65</td>
<td>11300</td>
</tr>
<tr>
<td>9/16</td>
<td>14</td>
<td>0,9</td>
<td>75</td>
<td>13100</td>
</tr>
<tr>
<td>15</td>
<td>0,95</td>
<td>86</td>
<td>14960</td>
<td></td>
</tr>
<tr>
<td>5/8</td>
<td>16</td>
<td>1,05</td>
<td>98</td>
<td>17100</td>
</tr>
<tr>
<td>3/4</td>
<td>18</td>
<td>1,15</td>
<td>126</td>
<td>21140</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1,3</td>
<td>158</td>
<td>27010</td>
</tr>
<tr>
<td>7/8</td>
<td>22</td>
<td>1,4</td>
<td>185</td>
<td>31320</td>
</tr>
</tbody>
</table>

*Classe 180/199/kg/mm²

Charge de rupture théorique = charge de rupture effective x 1.219

Utilisation:
- Elingues de petit diamètre.
- haubannage et contreventement.

6 X 24 (9+15) fils + 7 Ames en textile

GALVANISE

<table>
<thead>
<tr>
<th>Diam. câble</th>
<th>Diam. fil ext.</th>
<th>Poids par 100 m</th>
<th>Charge de rupture effective mini*</th>
<th>Code art.</th>
</tr>
</thead>
<tbody>
<tr>
<td>pouces</td>
<td>mm</td>
<td>mm</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>5/16</td>
<td>8</td>
<td>0,45</td>
<td>22</td>
<td>3900</td>
</tr>
<tr>
<td>3/8</td>
<td>10</td>
<td>0,5</td>
<td>32</td>
<td>5400</td>
</tr>
<tr>
<td>7/16</td>
<td>11</td>
<td>0,6</td>
<td>38</td>
<td>6400</td>
</tr>
<tr>
<td>1/2</td>
<td>12</td>
<td>0,65</td>
<td>46</td>
<td>7500</td>
</tr>
<tr>
<td>9/16</td>
<td>14</td>
<td>0,7</td>
<td>53</td>
<td>8700</td>
</tr>
<tr>
<td>5/8</td>
<td>16</td>
<td>0,8</td>
<td>61</td>
<td>10000</td>
</tr>
<tr>
<td>3/4</td>
<td>18</td>
<td>0,9</td>
<td>78</td>
<td>12900</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,95</td>
<td>98</td>
<td>16000</td>
</tr>
<tr>
<td>7/8</td>
<td>22</td>
<td>1,2</td>
<td>154</td>
<td>25600</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>1,3</td>
<td>178</td>
<td>29600</td>
</tr>
</tbody>
</table>

*Classe 160/179/kg/mm²

Charge de rupture théorique = charge de rupture effective x 1.149

Utilisation:
- Amarres.
- Travaux publics.
<table>
<thead>
<tr>
<th>Diam. câble (pouces)</th>
<th>Diam. câble (mm)</th>
<th>Poids par 100 m (kg)</th>
<th>Charge de rupture effective mini* (kg)</th>
<th>Code art.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/16</td>
<td>8</td>
<td>32</td>
<td>4500</td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td>9</td>
<td>37</td>
<td>6300</td>
<td></td>
</tr>
<tr>
<td>11/32</td>
<td>11</td>
<td>45</td>
<td>7850</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>12</td>
<td>54</td>
<td>9100</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>63</td>
<td>10700</td>
<td></td>
</tr>
<tr>
<td>9/16</td>
<td>14</td>
<td>73</td>
<td>12350</td>
<td></td>
</tr>
<tr>
<td>5/8</td>
<td>16</td>
<td>95</td>
<td>16200</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>120</td>
<td>20500</td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>19</td>
<td>134</td>
<td>22890</td>
<td></td>
</tr>
<tr>
<td>7/8</td>
<td>22</td>
<td>187</td>
<td>29600</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>214</td>
<td>34500</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>243</td>
<td>39200</td>
<td></td>
</tr>
<tr>
<td>1 1/8</td>
<td>28</td>
<td>290</td>
<td>47800</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1,8</td>
<td>308</td>
<td>50000</td>
<td></td>
</tr>
<tr>
<td>1 1/4</td>
<td>32</td>
<td>379</td>
<td>61000</td>
<td></td>
</tr>
<tr>
<td>1 3/8</td>
<td>36</td>
<td>476</td>
<td>78000</td>
<td></td>
</tr>
</tbody>
</table>

*Classe 180/199/kg/mm²

Charge de rupture théorique = charge de rupture effective x 1.176

Utilisation : - Traction, excavateurs.
- Déboisement.

8 X 19 Filler
(8 x 25) (1+6/6F+12)
fil + 1 Ame en acier

<table>
<thead>
<tr>
<th>Diam. câble (pouces)</th>
<th>Diam. câble (mm)</th>
<th>Poids par 100 m (kg)</th>
<th>Charge de rupture effective mini* (kg)</th>
<th>Code art.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/16</td>
<td>8</td>
<td>29</td>
<td>4430</td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td>9</td>
<td>39</td>
<td>5500</td>
<td></td>
</tr>
<tr>
<td>10/32</td>
<td>11</td>
<td>44</td>
<td>6390</td>
<td></td>
</tr>
<tr>
<td>7/16</td>
<td>14</td>
<td>53</td>
<td>8380</td>
<td></td>
</tr>
<tr>
<td>15/32</td>
<td>16</td>
<td>63</td>
<td>9980</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>13</td>
<td>74</td>
<td>11700</td>
<td></td>
</tr>
<tr>
<td>9/16</td>
<td>14</td>
<td>86</td>
<td>13500</td>
<td></td>
</tr>
<tr>
<td>19/32</td>
<td>15</td>
<td>99</td>
<td>15600</td>
<td></td>
</tr>
<tr>
<td>5/8</td>
<td>16</td>
<td>109</td>
<td>17800</td>
<td></td>
</tr>
<tr>
<td>11/17</td>
<td>17</td>
<td>127</td>
<td>20000</td>
<td></td>
</tr>
<tr>
<td>23/32</td>
<td>18</td>
<td>140</td>
<td>22400</td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>19</td>
<td>160</td>
<td>25000</td>
<td></td>
</tr>
<tr>
<td>25/32</td>
<td>20</td>
<td>177</td>
<td>27700</td>
<td></td>
</tr>
<tr>
<td>7/8</td>
<td>22</td>
<td>214</td>
<td>33600</td>
<td></td>
</tr>
<tr>
<td>15/16</td>
<td>24</td>
<td>255</td>
<td>39900</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>26</td>
<td>299</td>
<td>46900</td>
<td></td>
</tr>
<tr>
<td>1 1/8</td>
<td>28</td>
<td>345</td>
<td>54300</td>
<td></td>
</tr>
<tr>
<td>1 1/4</td>
<td>32</td>
<td>450</td>
<td>70900</td>
<td></td>
</tr>
<tr>
<td>1 3/8</td>
<td>36</td>
<td>570</td>
<td>89800</td>
<td></td>
</tr>
<tr>
<td>1 1/2</td>
<td>40</td>
<td>705</td>
<td>111000</td>
<td></td>
</tr>
</tbody>
</table>

*Classe 200/220/kg/mm²

Charge de rupture théorique = charge de rupture effective x 1.25

Utilisation : - Ponts roulants.
- Matériel de génie civil.
- Excavateurs, pelles mécaniques.
- Forage, mines et déboisement.

6 x 26 WS
(1+5+(5+5)+10)
fil + 1 Ame en acier

<table>
<thead>
<tr>
<th>Diam. câble (pouces)</th>
<th>Diam. câble (mm)</th>
<th>Poids par 100 m (kg)</th>
<th>Charge de rupture effective mini* (kg)</th>
<th>Code art.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8</td>
<td>10</td>
<td>40</td>
<td>6900</td>
<td></td>
</tr>
<tr>
<td>7/16</td>
<td>11</td>
<td>43</td>
<td>8400</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>12</td>
<td>61</td>
<td>10300</td>
<td></td>
</tr>
<tr>
<td>9/16</td>
<td>14</td>
<td>70</td>
<td>14200</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>91</td>
<td>15700</td>
<td></td>
</tr>
<tr>
<td>5/8</td>
<td>16</td>
<td>107</td>
<td>18600</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1,3</td>
<td>139</td>
<td>24300</td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>20</td>
<td>160</td>
<td>27800</td>
<td></td>
</tr>
<tr>
<td>7/8</td>
<td>22</td>
<td>194</td>
<td>34200</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1,65</td>
<td>218</td>
<td>38000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>256</td>
<td>45200</td>
<td></td>
</tr>
<tr>
<td>1 1/8</td>
<td>28</td>
<td>315</td>
<td>56200</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2,1</td>
<td>324</td>
<td>58700</td>
<td></td>
</tr>
<tr>
<td>1 1/4</td>
<td>32</td>
<td>415</td>
<td>74400</td>
<td></td>
</tr>
<tr>
<td>1 3/8</td>
<td>36</td>
<td>515</td>
<td>92500</td>
<td></td>
</tr>
</tbody>
</table>

*Classe 180/199/kg/mm²

Charge de rupture théorique = charge de rupture effective x 1.25

Utilisation : - Appareils de chantier, pelles mécaniques.
- Buldozers, excavateurs.
- Déboisement.
Câbles d’acier

6 X 36 WS

(1+7+(7+7)+14)

fils

+ 1 Ame en textile

<table>
<thead>
<tr>
<th>Diam. câble</th>
<th>Diam. fil ext.</th>
<th>Poids par 100 m</th>
<th>Charge de rupture effective mini*</th>
</tr>
</thead>
<tbody>
<tr>
<td>pouces</td>
<td>mm</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>5/16</td>
<td>8</td>
<td>0,37</td>
<td>234</td>
</tr>
<tr>
<td>9</td>
<td>0,45</td>
<td>24</td>
<td>4840</td>
</tr>
<tr>
<td>3/8</td>
<td>0,55</td>
<td>37</td>
<td>6300</td>
</tr>
<tr>
<td>11</td>
<td>0,6</td>
<td>44,8</td>
<td>7650</td>
</tr>
<tr>
<td>1/2</td>
<td>0,63</td>
<td>54</td>
<td>9000</td>
</tr>
<tr>
<td>13</td>
<td>0,7</td>
<td>62,5</td>
<td>10700</td>
</tr>
<tr>
<td>9/16</td>
<td>1,0</td>
<td>72,5</td>
<td>12350</td>
</tr>
<tr>
<td>15</td>
<td>0,8</td>
<td>83,5</td>
<td>14200</td>
</tr>
<tr>
<td>5/8</td>
<td>1,0</td>
<td>97,7</td>
<td>16200</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>120</td>
<td>20500</td>
</tr>
<tr>
<td>3/4</td>
<td>1,05</td>
<td>134</td>
<td>22790</td>
</tr>
<tr>
<td>20</td>
<td>1,1</td>
<td>148</td>
<td>25300</td>
</tr>
<tr>
<td>7/8</td>
<td>1,2</td>
<td>179</td>
<td>30600</td>
</tr>
<tr>
<td>24</td>
<td>1,3</td>
<td>208</td>
<td>33200</td>
</tr>
<tr>
<td>1</td>
<td>1,4</td>
<td>241</td>
<td>38600</td>
</tr>
<tr>
<td>1 1/8</td>
<td>1,5</td>
<td>296</td>
<td>47000</td>
</tr>
<tr>
<td>30</td>
<td>1,65</td>
<td>335</td>
<td>53700</td>
</tr>
<tr>
<td>32</td>
<td>1,75</td>
<td>377</td>
<td>60000</td>
</tr>
<tr>
<td>35</td>
<td>1,85</td>
<td>468</td>
<td>75600</td>
</tr>
<tr>
<td>1 1/2</td>
<td>2</td>
<td>543</td>
<td>86000</td>
</tr>
<tr>
<td>40</td>
<td>2,2</td>
<td>596</td>
<td>95000</td>
</tr>
<tr>
<td>42</td>
<td>2,3</td>
<td>651</td>
<td>102600</td>
</tr>
<tr>
<td>44</td>
<td>2,4</td>
<td>709</td>
<td>111700</td>
</tr>
<tr>
<td>45</td>
<td>2,5</td>
<td>770</td>
<td>121300</td>
</tr>
<tr>
<td>48</td>
<td>2,6</td>
<td>832</td>
<td>131100</td>
</tr>
<tr>
<td>7/8</td>
<td>2,8</td>
<td>966</td>
<td>152100</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>1035</td>
<td>163200</td>
</tr>
<tr>
<td>1 1/8</td>
<td>54</td>
<td>2,9</td>
<td></td>
</tr>
</tbody>
</table>

*Classe 180/199/kg/mm²

Utilisation :
- Elignes et câbles de levage de ponts.

6 X 37 (1+6+12+18)

fils

+ 1 Ame en textile

<table>
<thead>
<tr>
<th>Diam. câble</th>
<th>Diam. fil ext.</th>
<th>Poids par 100 m</th>
<th>Charge de rupture effective mini*</th>
</tr>
</thead>
<tbody>
<tr>
<td>pouces</td>
<td>mm</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>5/16</td>
<td>8</td>
<td>0,37</td>
<td>234</td>
</tr>
<tr>
<td>9</td>
<td>0,45</td>
<td>31</td>
<td>4640</td>
</tr>
<tr>
<td>3/8</td>
<td>0,45</td>
<td>38</td>
<td>5370</td>
</tr>
<tr>
<td>11</td>
<td>0,5</td>
<td>46</td>
<td>6930</td>
</tr>
<tr>
<td>12</td>
<td>0,55</td>
<td>55</td>
<td>8250</td>
</tr>
<tr>
<td>13</td>
<td>0,6</td>
<td>64</td>
<td>9690</td>
</tr>
<tr>
<td>5/8</td>
<td>0,65</td>
<td>75</td>
<td>11200</td>
</tr>
<tr>
<td>18</td>
<td>0,73</td>
<td>97</td>
<td>14700</td>
</tr>
<tr>
<td>3/4</td>
<td>0,8</td>
<td>123</td>
<td>18600</td>
</tr>
<tr>
<td>13/16</td>
<td>0,9</td>
<td>152</td>
<td>22900</td>
</tr>
<tr>
<td>15/16</td>
<td>1</td>
<td>184</td>
<td>27700</td>
</tr>
<tr>
<td>26</td>
<td>1,1</td>
<td>219</td>
<td>33000</td>
</tr>
<tr>
<td>1 1/8</td>
<td>1,2</td>
<td>257</td>
<td>38700</td>
</tr>
<tr>
<td>1 1/4</td>
<td>1,25</td>
<td>298</td>
<td>44900</td>
</tr>
<tr>
<td>1 1/4</td>
<td>1,5</td>
<td>390</td>
<td>58700</td>
</tr>
<tr>
<td>1 3/8</td>
<td>1,6</td>
<td>493</td>
<td>74300</td>
</tr>
<tr>
<td>1 1/2</td>
<td>1,8</td>
<td>609</td>
<td>91700</td>
</tr>
<tr>
<td>1 3/4</td>
<td>2</td>
<td>737</td>
<td>111000</td>
</tr>
</tbody>
</table>

*Classe 180/199/kg/mm²

Utilisation :
- Elignes.

6 X 41 WS

(1+8+(8+8)+16)

fils

+ 1 Ame en textile

<table>
<thead>
<tr>
<th>Diam. câble</th>
<th>Diam. fil ext.</th>
<th>Poids par 100 m</th>
<th>Charge de rupture effective mini*</th>
</tr>
</thead>
<tbody>
<tr>
<td>pouces</td>
<td>mm</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>1/2</td>
<td>13</td>
<td>0,65</td>
<td>72</td>
</tr>
<tr>
<td>5/16</td>
<td>14</td>
<td>0,73</td>
<td>83</td>
</tr>
<tr>
<td>15</td>
<td>0,75</td>
<td>96</td>
<td>15100</td>
</tr>
<tr>
<td>9</td>
<td>0,8</td>
<td>109</td>
<td>17100</td>
</tr>
<tr>
<td>18</td>
<td>0,9</td>
<td>138</td>
<td>21900</td>
</tr>
<tr>
<td>3/4</td>
<td>0,95</td>
<td>154</td>
<td>24200</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>170</td>
<td>26800</td>
</tr>
<tr>
<td>7/8</td>
<td>2</td>
<td>1,1</td>
<td>22900</td>
</tr>
<tr>
<td>24</td>
<td>1,15</td>
<td>225</td>
<td>36200</td>
</tr>
<tr>
<td>1</td>
<td>26</td>
<td>1,25</td>
<td>42200</td>
</tr>
<tr>
<td>1 1/8</td>
<td>28</td>
<td>1,4</td>
<td>334</td>
</tr>
<tr>
<td>30</td>
<td>1,45</td>
<td>358</td>
<td>56800</td>
</tr>
<tr>
<td>1 1/4</td>
<td>32</td>
<td>1,55</td>
<td>409</td>
</tr>
<tr>
<td>34</td>
<td>1,65</td>
<td>464</td>
<td>72800</td>
</tr>
<tr>
<td>1 3/8</td>
<td>36</td>
<td>1,75</td>
<td>522</td>
</tr>
</tbody>
</table>

*Classe 180/199/kg/mm²

Utilisation :
- Câbles de levage de ponts.

6 X 36 WS

(1+7+(7+7)+14)

fils

+ 1 Ame en acier

<table>
<thead>
<tr>
<th>Diam. câble</th>
<th>Diam. fil ext.</th>
<th>Poids par 100 m</th>
<th>Charge de rupture effective mini*</th>
</tr>
</thead>
<tbody>
<tr>
<td>pouces</td>
<td>mm</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>5/16</td>
<td>8</td>
<td>0,37</td>
<td>234</td>
</tr>
<tr>
<td>9</td>
<td>0,45</td>
<td>31</td>
<td>4640</td>
</tr>
<tr>
<td>3/8</td>
<td>0,45</td>
<td>38</td>
<td>5370</td>
</tr>
<tr>
<td>11</td>
<td>0,5</td>
<td>46</td>
<td>6930</td>
</tr>
<tr>
<td>12</td>
<td>0,55</td>
<td>55</td>
<td>8250</td>
</tr>
<tr>
<td>13</td>
<td>0,6</td>
<td>64</td>
<td>9690</td>
</tr>
<tr>
<td>5/8</td>
<td>0,65</td>
<td>75</td>
<td>11200</td>
</tr>
<tr>
<td>18</td>
<td>0,73</td>
<td>97</td>
<td>14700</td>
</tr>
<tr>
<td>3/4</td>
<td>0,8</td>
<td>123</td>
<td>18600</td>
</tr>
<tr>
<td>13/16</td>
<td>0,9</td>
<td>152</td>
<td>22900</td>
</tr>
<tr>
<td>15/16</td>
<td>1</td>
<td>184</td>
<td>27700</td>
</tr>
<tr>
<td>26</td>
<td>1,1</td>
<td>219</td>
<td>33000</td>
</tr>
<tr>
<td>1 1/8</td>
<td>1,2</td>
<td>257</td>
<td>38700</td>
</tr>
<tr>
<td>1 1/4</td>
<td>1,25</td>
<td>298</td>
<td>44900</td>
</tr>
<tr>
<td>1 1/4</td>
<td>1,5</td>
<td>390</td>
<td>58700</td>
</tr>
<tr>
<td>1 3/8</td>
<td>1,6</td>
<td>493</td>
<td>74300</td>
</tr>
<tr>
<td>1 1/2</td>
<td>1,8</td>
<td>609</td>
<td>91700</td>
</tr>
<tr>
<td>1 3/4</td>
<td>2</td>
<td>737</td>
<td>111000</td>
</tr>
</tbody>
</table>

*Classe 180/199/kg/mm²

Utilisation :
- Câbles de levage de ponts.
Câbles d’acier antigiratoires

19 x 7 fils
- Ame en acier

<table>
<thead>
<tr>
<th>Diam. câble</th>
<th>Diam. fil ext.</th>
<th>Poids par 100 m</th>
<th>Charge de rupture effective mini*</th>
<th>Code art.</th>
</tr>
</thead>
<tbody>
<tr>
<td>pouces</td>
<td>mm</td>
<td>mm</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>3/16</td>
<td>5</td>
<td>0,3</td>
<td>9</td>
<td>1400</td>
</tr>
<tr>
<td>1/4</td>
<td>6</td>
<td>0,4</td>
<td>16</td>
<td>2500</td>
</tr>
<tr>
<td>7</td>
<td>0,45</td>
<td>21</td>
<td>3200</td>
<td></td>
</tr>
<tr>
<td>5/16</td>
<td>8</td>
<td>0,5</td>
<td>26</td>
<td>3900</td>
</tr>
<tr>
<td>9</td>
<td>0,55</td>
<td>31</td>
<td>4800</td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td>10</td>
<td>0,6</td>
<td>37</td>
<td>6700</td>
</tr>
<tr>
<td>11</td>
<td>0,65</td>
<td>50</td>
<td>7700</td>
<td></td>
</tr>
<tr>
<td>7/16</td>
<td>12</td>
<td>0,75</td>
<td>57</td>
<td>8900</td>
</tr>
<tr>
<td>1/2</td>
<td>13</td>
<td>0,8</td>
<td>65</td>
<td>10200</td>
</tr>
<tr>
<td>9/16</td>
<td>14</td>
<td>0,9</td>
<td>83</td>
<td>12700</td>
</tr>
<tr>
<td>5/8</td>
<td>16</td>
<td>1</td>
<td>102</td>
<td>15900</td>
</tr>
<tr>
<td>18</td>
<td>1,1</td>
<td>124</td>
<td>19200</td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>19</td>
<td>1,2</td>
<td>148</td>
<td>22600</td>
</tr>
<tr>
<td>20</td>
<td>1,3</td>
<td>175</td>
<td>25000</td>
<td></td>
</tr>
<tr>
<td>7/8</td>
<td>22</td>
<td>1,4</td>
<td>201</td>
<td>30800</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>1,6</td>
<td>263</td>
<td>40200</td>
</tr>
<tr>
<td>1 1/8</td>
<td>29</td>
<td>1,8</td>
<td>332</td>
<td>50800</td>
</tr>
</tbody>
</table>

*Classe 180/199/kg/mm²

35 x 7 fils
- Ame en acier GALVANISE

<table>
<thead>
<tr>
<th>Diam. câble</th>
<th>Diam. fil ext.</th>
<th>Poids par 100 m</th>
<th>Charge de rupture effective mini*</th>
<th>Code art.</th>
</tr>
</thead>
<tbody>
<tr>
<td>pouces</td>
<td>mm</td>
<td>mm</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>10</td>
<td>0,5</td>
<td>42</td>
<td>6950</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0,6</td>
<td>58</td>
<td>9800</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>0,65</td>
<td>68</td>
<td>11800</td>
<td></td>
</tr>
<tr>
<td>9/16</td>
<td>0,7</td>
<td>79</td>
<td>12900</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,75</td>
<td>95</td>
<td>14600</td>
<td></td>
</tr>
<tr>
<td>5/8</td>
<td>0,8</td>
<td>103</td>
<td>16800</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0,9</td>
<td>130</td>
<td>20725</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0,95</td>
<td>152</td>
<td>23000</td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>1</td>
<td>161</td>
<td>25485</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1,05</td>
<td>176</td>
<td>28000</td>
<td></td>
</tr>
<tr>
<td>7/8</td>
<td>1,1</td>
<td>195</td>
<td>30665</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1,2</td>
<td>231</td>
<td>42895</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>28</td>
<td>1,4</td>
<td>315</td>
<td>50000</td>
</tr>
</tbody>
</table>

*Classe 200/220/kg/mm²

Charge de rupture théorique = charge de rupture effective x 1.265

Utilisation :
- Grues à tour.
- Ponts roulants.

Charge de rupture théorique = charge de rupture effective x 1.33

Utilisation :
- Grues télescopiques
- Grues à tour.

Un câble antigiratoire c’est quoi?

- Une charge extérieure produit dans un câble conventionnel un couple de giration qui essaie de torsader le câble et la charge dans la direction opposée du sens de câblage.

- Un câble antigiratoire possède une âme acier, laquelle est câblée dans le sens opposé aux torons extérieurs. Sous charge, l’âme acier essaie de torsader le câble dans un sens et les torons extérieurs dans le sens opposé.

- La composition géométrique des câbles antigiratoires est choisie de sorte que les couples de giration des âmes en acier et des torons extérieurs s’annulent dans une grande zone de charge et évitent ainsi le vrillage des câbles même sous des hauteurs de levage importantes.

- Dans les câbles antigiratoires la charge ne crée pas de forces intérieures qui essaient de faire tourner le câble. Mais, il y a des influences extérieures qui essaient de tourner le câble par des forces tangentielles, telles que les angles de déflexion aux poulies et au tambour.

- Les rotations forcées causent un couple de giration important dans ces câbles antigiratoires. Si ces câbles sont fixés à un émerillon, la torsion créée peut tourner l’émerillon et, dans le cas idéal, réduire le couple induit vers zéro.

- Pour des câbles antigiratoires, l’émerillon n’a pas d’inconvénients, au contraire les torsions induites par des forces extérieures peuvent s’évacuer. Pour des câbles non antigiratoires, l’émerillon n’a que des inconvénients: il réduit la charge de rupture, accélère la fatigue et génère des torsions qui entrent ensuite dans le mouillage.
Câbles d’acier inox

1 X 19 fils
Matière AISI 316

7 X 7 fils
+ 1 Ame en acier
Matière AISI 316

7 X 19 fils
+ 1 Ame en acier
Matière AISI 316

6 X 36 fils
+ 1 Ame en acier
Matière AISI 316

Diam. câble	**Diam. fil ext.**	**Poids par 100 m**	**Charge de rupture effective mini**	**Code art.**
3/64 | 1 | 0,2 | 1 | 84
1/16 | 1,5 | 0,3 | 1,1 | 190
5/64 | 2 | 0,4 | 1,98 | 337
3/32 | 2,5 | 0,5 | 3 | 525
1/2 | 3 | 0,6 | 4,5 | 757
5/32 | 4 | 0,8 | 8 | 1350
3/16 | 5 | 1 | 12 | 2100
1/4 | 6 | 1,2 | 18 | 3000
9/32 | 7 | 1,4 | 24 | 3850
5/16 | 8 | 1,6 | 31 | 5040
3/8 | 10 | 2 | 50 | 7870
1/2 | 12 | 2,4 | 71 | 10600
9/16 | 14 | 2,8 | 97 | 13400
5/8 | 16 | 3,2 | 127 | 17400
3/4 | 19 | 3,8 | 176 | 21600
7/8 | 22 | 4,4 | 236 | 29000
1 | 26 | 5,2 | 330 | 40600

*Classe 160/180/kg/mm²

Diam. câble	**Diam. fil ext.**	**Poids par 100 m**	**Charge de rupture effective mini**	**Code art.**
3/32 | 2 | 0,22 | 1,98 | 337
3/16 | 5 | 1 | 12 | 2100
1/4 | 6 | 1,2 | 18 | 3000
9/32 | 7 | 1,4 | 24 | 3850
5/16 | 8 | 1,6 | 31 | 5040
3/8 | 10 | 2 | 50 | 7870
1/2 | 12 | 2,4 | 71 | 10600
9/16 | 14 | 2,8 | 97 | 13400
5/8 | 16 | 3,2 | 127 | 17400
3/4 | 19 | 3,8 | 176 | 21600
7/8 | 22 | 4,4 | 236 | 29000
1 | 26 | 5,2 | 330 | 40600

*Classe 160/180/kg/mm²

Diam. câble	**Diam. fil ext.**	**Poids par 100 m**	**Charge de rupture effective mini**	**Code art.**
3/8 | 10 | 0,55 | 41 | 5700
1/2 | 12 | 0,65 | 59 | 8210
9/16 | 14 | 0,75 | 80 | 11200
5/8 | 16 | 0,9 | 105 | 14600
3/4 | 18 | 1 | 133 | 18500
1/2 | 12 | 1,1 | 164 | 22800
7/8 | 22 | 1,2 | 198 | 27600
1 | 26 | 1,45 | 276 | 41800
1 1/8 | 28 | 1,55 | 321 | 48000

*Classe 160/180/kg/mm²

Diam. câble	**Diam. fil ext.**	**Poids par 100 m**	**Charge de rupture effective mini**	**Code art.**
3/8 | 10 | 0,55 | 41 | 5700
1/2 | 12 | 0,65 | 59 | 8210
9/16 | 14 | 0,75 | 80 | 11200
5/8 | 16 | 0,9 | 105 | 14600
3/4 | 18 | 1 | 133 | 18500
1/2 | 12 | 1,1 | 164 | 22800
7/8 | 22 | 1,2 | 198 | 27600
1 | 26 | 1,45 | 276 | 41800
1 1/8 | 28 | 1,55 | 321 | 48000

UTILISATION
Dans tous les cas où la rouille est interdite et où la température est supérieure à 300°C.

QUALITÉ
Type A.I.S.I. 304 en qualité standard . (AFNOR Z.6.C.N.18-09 ou DIN 1.4301)
Type A.I.S.I. 316 en qualité offshore aves très grande résistance à la corrosion par l’eau de mer. (AFNOR Z.6.C.N.17-11) (ou DIN 1.4401)

ELASTICITE
Le module d’élasticité (E) du câble en acier inoxydable est 10% inférieur à celui des câbles ordinaires ou galvanisés.

APPLICATIONS
Les câbles et accessoires en acier inoxydable sont surtout utilisés dans l’industrie chimique et alimentaire, l’aviation, les sports nautiques, les câbles de haubannage et en architecture par exemple pour les rampes décoratives. Il faut noter que nous avons également toutes les terminaisons en inox, manchons, cosses, crochets, manilles, ridoirs, tendeurs, serre-câbles...
Câbles d’acier enrobés

7 X 7 fils enrobage PVC
+ 1 Ame en acier

<table>
<thead>
<tr>
<th>Diam. câble (mm)</th>
<th>Diam. ext. (mm)</th>
<th>Poids par 100 m (kg)</th>
<th>Charge de rupture effective mini (kg)</th>
<th>Code art.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>2,5</td>
<td>4</td>
<td>3</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
<td>650</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>7,5</td>
<td>1150</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>9,8</td>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>18</td>
<td>2600</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>25</td>
<td>4600</td>
<td></td>
</tr>
</tbody>
</table>

Câble INOX

<table>
<thead>
<tr>
<th>Diam. câble (mm)</th>
<th>Diam. ext. (mm)</th>
<th>Poids par 100 m (kg)</th>
<th>Charge de rupture effective mini (kg)</th>
<th>Code art.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
<td>650</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>8</td>
<td>1150</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>15</td>
<td>1800</td>
<td></td>
</tr>
</tbody>
</table>

Classe 180/199/kg/mm²

DESCRIPTION

- Le câble avec enrobage polyamide est un câble en fils d’acier enrobé de nylon par extrusion afin que ce dernier forme une masse compacte avec lui.
- Le câble avec enrobage nylon s’il est utilisé et traité correctement à une durée de vie supérieure de plusieurs fois à celle des câbles en fils d’acier de construction traditionnelle.
- Le câble est recouvert de nylon, thermoplastique dont les excellentes propriétés mécaniques sont particulièrement adaptées à l’enrobage de câbles. Grâce à des additifs spéciaux, il possède une très haute résistance aux rayons ultra-violets.

AVANTAGES DU CABLE AVEC ENROBAGE NYLON

- Charge de rupture élevée.
- Haute résistance à l’usure.
- Aucune corrosion.
- Moins d’entretien.
- Haute résistance à la fatigue.
- N’abîme pas les mains.
- Haute résistance à la déformation.
- Haute isolation électrique.
- Surface lisse.
- Aucune formation intempestive de boucles.
- Sécurité.

7 X 19 fils enrobage PVC
+ 1 Ame en acier

<table>
<thead>
<tr>
<th>Diam. câble (mm)</th>
<th>Diam. ext. (mm)</th>
<th>Poids par 100 m (kg)</th>
<th>Charge de rupture effective mini (kg)</th>
<th>Code art.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>7,5</td>
<td>1070</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>15</td>
<td>2400</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>25,4</td>
<td>4250</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>42</td>
<td>6700</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>56</td>
<td>9600</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>75</td>
<td>13100</td>
<td></td>
</tr>
</tbody>
</table>

Classe 180/199/kg/mm²

Sur demande: gaines PVC transparentes ou colorées (rouge, vert, jaune, noir, bleu, etc.)

7 X 7 fils enrobage polyamide
+ 1 Ame en acier

<table>
<thead>
<tr>
<th>Diam. câble (mm)</th>
<th>Diam. ext. (mm)</th>
<th>Composition</th>
<th>Poids par 100 m (kg)</th>
<th>Charge de rupture effective mini (kg)</th>
<th>Code art.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,6</td>
<td>1 x 19</td>
<td>1,5</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>1,8</td>
<td>2,5</td>
<td>7 x 7</td>
<td>2</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>2,4</td>
<td>3</td>
<td>7 x 7</td>
<td>3</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>6 x 19</td>
<td>3,5</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>3,5</td>
<td>5</td>
<td>6 x 19</td>
<td>5</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>6 x 19</td>
<td>7,5</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>5,3</td>
<td>7</td>
<td>7 x 19</td>
<td>14</td>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>6,2</td>
<td>8</td>
<td>6 x 19</td>
<td>16</td>
<td>2600</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>7 x 19</td>
<td>28</td>
<td>4250</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>7 x 19</td>
<td>42</td>
<td>6700</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>7 x 7</td>
<td>4,5</td>
<td>650</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>7 x 7</td>
<td>7,5</td>
<td>1150</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>7 x 7</td>
<td>14</td>
<td>1800</td>
<td></td>
</tr>
</tbody>
</table>

Classe 180/199/kg/mm²

Sur demande: gaines PVC transparentes ou colorées (rouge, vert, jaune, noir, bleu, etc.)

Existe également avec gaine en polypropylène.

Suivant disponibilité ou par quantité minimum de fabrication (500 ou 1000 mètres).
Câbles d’acier spéciaux

Le câble adapté aux grues à tour

- **Câble de levage principal**
 - *Casar Starlift*
 - Flexible avec très grande tendance antigiratoire, charge de rupture supérieure et longévité excellente.
 - *Casar Eurolift*
 - Flexible, avec tendance antigiratoire optimale, charge de rupture élevée et grande longévité.

- **Câble d’ancrage pour fléchette**
 - *Casar Turbolift*
 - Câble à 8 torons, double-parallèle, avec des torons densifiés. Charge de rupture très élevée, faible allongement.

- **Câble de Chariot**
 - *Casar Unilift*
 - Câble à 8 torons, double-parallèle, avec torons conventionnels. Très grande charge de rupture, grande flexibilité et faible allongement.
 - *Casar Alphalift*
 - Câble à 8 torons, double-parallèle, avec torons conventionnels. Très grande charge de rupture, grande flexibilité et faible allongement.

- **Câble de montage**
 - *Casar Stratolift*
 - Câble à 8 torons, double-parallèle, avec torons conventionnels. Très grande charge de rupture, grande flexibilité et faible allongement.
 - *Casar Turbolift*
 - Câble à 8 torons, double-parallèle, avec des torons densifiés. Charge de rupture très élevée, faible allongement.

Le câble adapté aux grues télescopiques

- **Câble de levage principal**
 - *Casar Starlift*
 - Flexible avec très grande tendance antigiratoire, charge de rupture supérieure et longévité excellente.
 - *Casar Eurolift*
 - Flexible, avec tendance antigiratoire optimale, charge de rupture élevée et grande longévité.

* Exécution en câblage lang surtout adaptée à l’enroulement d’un tambour multicouche.

Industrial Lifting
oudstrijdersstraat 31
B-1600 Sint-Pieters-Leeuw (Belgium)
Tel: +32 2 378 06 50 Fax : +32 2 377 58 91

www.ilsa.be
info@ilsa.be
Câbles d’acier spéciaux

Câble croisé

- Câbles super flexibles pour palans électriques et ponts roulants où la hauteur de levage ou le nombre de brins n’apporte pas l’application d’un câble antigiratoire.
- Câble à 8 tons extérieurs, double parallélisme des éléments constituant le câble.
- Impregnation spéciale.
- Grande flexibilité.
- Charge de rupture supérieure.

Câble lang

- Câble de levage antigiratoire flexible composé de tons extérieurs densifiés et d’une âme métallique densifiée.
- A une imprégnation spéciale.
- A une charge de rupture supérieure.
- Très résistant aux pressions sur le tambour.
- A une composition où la partie interne est sans chevauchement des tons pour éviter la déstructuration intérieure du câble.

Antigiratoire

<table>
<thead>
<tr>
<th>Diam. nominal*</th>
<th>Section métallique</th>
<th>Poids</th>
<th>Charge de rupture calculée</th>
<th>Charge de rupture effective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm²</td>
<td>kg/mm²</td>
<td>(1770 N/mm²)</td>
<td>(1620 N/mm²)</td>
</tr>
<tr>
<td>mm</td>
<td>t</td>
<td>kN</td>
<td>(1770 N/mm²)</td>
<td>(1620 N/mm²)</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>7</td>
<td>7.7</td>
<td>13.6</td>
<td>13.9 15.1</td>
<td>15.40 16.60 11.7 11.90 13.00 14.30</td>
</tr>
<tr>
<td>4.5</td>
<td>9.9</td>
<td>17.6</td>
<td>17.90 19.4</td>
<td>18.90 21.4 18.90 14.90 15.30 16.70 18.40 18.70</td>
</tr>
<tr>
<td>5</td>
<td>12.5</td>
<td>22.2</td>
<td>22.60 24.6</td>
<td>25.10 17.20 17.60 19.40 21.20 21.60 23.20 23.70</td>
</tr>
<tr>
<td>5.5</td>
<td>15.5</td>
<td>27.3</td>
<td>27.90 30.4</td>
<td>31.30 33.40 23.50 23.90 26.10 26.60 28.70 29.30</td>
</tr>
<tr>
<td>6</td>
<td>18.7</td>
<td>33.1</td>
<td>33.80 36.9</td>
<td>37.60 40.50 28.50 30.20 35.90 37.30 39.40 40.50</td>
</tr>
<tr>
<td>6.5</td>
<td>22.5</td>
<td>39.8</td>
<td>40.60 44.6</td>
<td>45.80 48.60 34.20 34.90 38.70 41.80 42.70 43.20</td>
</tr>
<tr>
<td>7</td>
<td>25.3</td>
<td>44.6</td>
<td>45.50 49.6</td>
<td>50.60 53.30 38.30 39.10 42.60 45.30 46.90 47.80</td>
</tr>
<tr>
<td>7.5</td>
<td>29.4</td>
<td>51.0</td>
<td>50.70 55.6</td>
<td>58.80 63.40 47.40 47.50 50.50 50.60 51.50 51.60</td>
</tr>
<tr>
<td>8</td>
<td>32.6</td>
<td>57.6</td>
<td>58.60 65.3</td>
<td>66.30 71.40 53.00 54.50 56.50 56.60 57.60 57.70</td>
</tr>
<tr>
<td>8.5</td>
<td>34.8</td>
<td>61.5</td>
<td>62.70 68.2</td>
<td>66.90 75.00 52.90 53.50 58.90 64.50 65.80 65.90</td>
</tr>
<tr>
<td>9</td>
<td>42.7</td>
<td>75.4</td>
<td>76.90 83.7</td>
<td>84.50 92.10 64.60 66.10 73.40 79.20 80.50 80.90</td>
</tr>
<tr>
<td>10</td>
<td>50.7</td>
<td>89.7</td>
<td>91.60 99.3</td>
<td>101.00 109.40 75.80 77.40 83.90 86.30 87.90 89.40</td>
</tr>
<tr>
<td>11</td>
<td>62.1</td>
<td>109.8</td>
<td>111.80 121.6</td>
<td>124.00 134.30 92.80 94.70 102.80 104.80 113.20 115.40</td>
</tr>
<tr>
<td>12</td>
<td>74.4</td>
<td>131.7</td>
<td>133.90 145.8</td>
<td>148.80 160.70 117.00 118.30 122.30 125.70 135.80 138.30</td>
</tr>
<tr>
<td>13</td>
<td>86.5</td>
<td>153.1</td>
<td>156.90 169.5</td>
<td>172.00 186.60 129.40 131.50 143.20 146.10 157.90 160.70</td>
</tr>
<tr>
<td>14</td>
<td>100.5</td>
<td>177.9</td>
<td>188.00 199.7</td>
<td>200.90 211.70 150.30 152.80 164.60 168.92 183.20 184.30</td>
</tr>
<tr>
<td>15</td>
<td>117.5</td>
<td>208.2</td>
<td>212.80 238.7</td>
<td>243.00 253.80 175.80 178.70 189.10 191.60 214.30 215.87</td>
</tr>
<tr>
<td>16</td>
<td>131.1</td>
<td>239.2</td>
<td>240.00 265.6</td>
<td>276.20 281.30 196.00 199.30 217.10 224.10 239.20 243.20</td>
</tr>
<tr>
<td>17</td>
<td>145.7</td>
<td>266.7</td>
<td>271.00 298.2</td>
<td>303.80 307.40 231.30 231.90 261.90 265.90 274.60 276.40</td>
</tr>
<tr>
<td>18</td>
<td>165.1</td>
<td>292.3</td>
<td>300.00 327.8</td>
<td>326.30 326.70 247.00 251.10 273.60 275.90 301.40 304.90</td>
</tr>
<tr>
<td>19</td>
<td>187.7</td>
<td>332.1</td>
<td>337.60 368.7</td>
<td>372.90 381.30 290.70 294.10 310.80 312.70 342.50 343.80</td>
</tr>
<tr>
<td>20</td>
<td>206.3</td>
<td>366.4</td>
<td>371.30 404.3</td>
<td>412.90 454.60 308.50 313.70 341.70 346.80 376.50 383.50</td>
</tr>
<tr>
<td>21</td>
<td>227.4</td>
<td>402.5</td>
<td>403.20 445.7</td>
<td>450.40 493.10 330.20 334.50 367.60 384.40 410.50 422.40 427.23</td>
</tr>
<tr>
<td>22</td>
<td>247.8</td>
<td>445.5</td>
<td>456.00 486.8</td>
<td>495.50 535.10 370.50 376.83 410.30 416.70 452.20 456.02 456.02</td>
</tr>
<tr>
<td>23</td>
<td>287.6</td>
<td>471.6</td>
<td>488.00 512.5</td>
<td>515.50 578.00 402.70 406.98 443.20 452.21 488.40 497.43 497.43</td>
</tr>
</tbody>
</table>

*Pour des diamètres supérieurs (jusqu’à 27 mm), nous consulter.
Antigiratoire

- **Câbles d'acier spéciaux**

- **Câbles de levage pour grues de bord,**
 - **Réputation mondiale pour son excellente**
 - **Composition de la partie interne sans**
 - **Cables pour toutes les grues à tour**
 - **Manière efficace la destruction,** les
 - **grues Offshore et aux applications en**

- **Câblage croisé ou lang**

- **Pour des diamètres supérieurs (jusqu'à 72 mm), nous consulter.**

Tableau des caractéristiques

<table>
<thead>
<tr>
<th>Diam. nominal*</th>
<th>Section métallique</th>
<th>Poids</th>
<th>Charge de rupture calculée</th>
<th>Charge de rupture effective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mm²</td>
<td>1770 N/mm² (180 kp/mm²)</td>
<td>1960 N/mm² (200 kp/mm²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1770 N/mm² (180 kp/mm²)</td>
<td>1960 N/mm² (200 kp/mm²)</td>
</tr>
<tr>
<td>mm</td>
<td></td>
<td></td>
<td>1770 N/mm² (180 kp/mm²)</td>
<td>1960 N/mm² (200 kp/mm²)</td>
</tr>
<tr>
<td>7</td>
<td>20,2</td>
<td>22,7</td>
<td>44,6</td>
<td>5,44</td>
</tr>
<tr>
<td>8</td>
<td>32,9</td>
<td>29,6</td>
<td>58,2</td>
<td>5,92</td>
</tr>
<tr>
<td>9</td>
<td>40,9</td>
<td>36,8</td>
<td>72,4</td>
<td>7,36</td>
</tr>
<tr>
<td>10</td>
<td>51,1</td>
<td>46</td>
<td>90,4</td>
<td>9,2</td>
</tr>
<tr>
<td>11</td>
<td>61,4</td>
<td>55,3</td>
<td>108,7</td>
<td>11,05</td>
</tr>
<tr>
<td>12</td>
<td>73,8</td>
<td>66,4</td>
<td>136,0</td>
<td>13,28</td>
</tr>
<tr>
<td>13</td>
<td>86,6</td>
<td>77,9</td>
<td>153,3</td>
<td>15,59</td>
</tr>
<tr>
<td>14</td>
<td>100,4</td>
<td>94,7</td>
<td>177,7</td>
<td>18,07</td>
</tr>
<tr>
<td>15</td>
<td>115,4</td>
<td>103,9</td>
<td>204,3</td>
<td>20,77</td>
</tr>
<tr>
<td>16</td>
<td>131,5</td>
<td>118,4</td>
<td>232,8</td>
<td>23,87</td>
</tr>
<tr>
<td>17</td>
<td>147,8</td>
<td>133</td>
<td>261,6</td>
<td>26,6</td>
</tr>
<tr>
<td>18</td>
<td>164,4</td>
<td>148</td>
<td>291</td>
<td>29,59</td>
</tr>
<tr>
<td>19</td>
<td>183,5</td>
<td>166,8</td>
<td>328</td>
<td>33,35</td>
</tr>
<tr>
<td>20</td>
<td>205,1</td>
<td>184,6</td>
<td>363</td>
<td>36,92</td>
</tr>
<tr>
<td>21</td>
<td>226,2</td>
<td>203,6</td>
<td>400,4</td>
<td>40,72</td>
</tr>
<tr>
<td>22</td>
<td>248,9</td>
<td>224</td>
<td>440,6</td>
<td>44,8</td>
</tr>
<tr>
<td>23</td>
<td>270,7</td>
<td>243,6</td>
<td>479,1</td>
<td>48,73</td>
</tr>
<tr>
<td>24</td>
<td>296,8</td>
<td>266,2</td>
<td>523,6</td>
<td>53,24</td>
</tr>
<tr>
<td>25</td>
<td>319</td>
<td>287,1</td>
<td>564,6</td>
<td>57,42</td>
</tr>
<tr>
<td>26</td>
<td>346,5</td>
<td>311,9</td>
<td>613,3</td>
<td>62,73</td>
</tr>
<tr>
<td>27</td>
<td>375,4</td>
<td>337,9</td>
<td>664,5</td>
<td>67,57</td>
</tr>
<tr>
<td>28</td>
<td>389,1</td>
<td>364,8</td>
<td>717,4</td>
<td>72,95</td>
</tr>
<tr>
<td>29</td>
<td>436,1</td>
<td>416,8</td>
<td>819,7</td>
<td>83,36</td>
</tr>
<tr>
<td>30</td>
<td>524,7</td>
<td>472,2</td>
<td>928,7</td>
<td>94,45</td>
</tr>
<tr>
<td>31</td>
<td>593,7</td>
<td>534,3</td>
<td>1050,8</td>
<td>106,87</td>
</tr>
<tr>
<td>32</td>
<td>669,2</td>
<td>602,3</td>
<td>1145,3</td>
<td>120,46</td>
</tr>
<tr>
<td>33</td>
<td>742,6</td>
<td>668,3</td>
<td>1314,4</td>
<td>133,67</td>
</tr>
<tr>
<td>34</td>
<td>821,2</td>
<td>739,1</td>
<td>1453,5</td>
<td>147,82</td>
</tr>
</tbody>
</table>

*Pour des diamètres supérieurs (jusqu'à 72 mm), nous consulter.

Antigiratoire

- **Câbles de levage pour grues de bord,**
 - **grues Offshore et aux applications en**
 - **atmosphère marine où l'on demande des**
 - **câbles antigratosoirs.**

- **A un cabling spéciale.**

- **A une infiltration plastique qui évite d'une**
 - **mani Die di destruction,** les
 - **frottements et la corrosion intérieurs.**

- **A une charge de rupture effective élevée**
 - **et une bonne résistance aux pressions sur**
 - **le tambour.**

Fiches techniques des autres câbles CASAR disponibles sur notre site internet

Câbles d’acier spéciaux

• Pour ponts-roulants, pelles mécaniques grue à benne prenseuse. A conseiller s’il vous faut une charge de rupture élevée pour respecter le coefficient de sécurité.

• Câble à 8 torons, double parallélisme des éléments constituant le câble avec des to -

• Imprécision spéciale.

• Grande flexibilité.

• Charge de rupture effective très élevée.

Câblage croisé ou lang

<table>
<thead>
<tr>
<th>Diam. nominal</th>
<th>Section métallique</th>
<th>Charge de rupture effective</th>
<th>Charge de rupture calculée</th>
</tr>
</thead>
</table>
Câbles d’acier spéciaux

Câbles d’acier spéciaux

• A une charge de rupture supérieure.
• A une grande flexibilité.
• Est un câble à 8 torons extérieurs avec ponts stripper, ponts pits, portiques de déroulants, ponts de coulée, grue container, déstructuration, les frottements et la corrosion.

<table>
<thead>
<tr>
<th>Diam. nominal</th>
<th>Section métallique</th>
<th>Poids</th>
<th>Charge de rupture calculée</th>
<th>Charge de rupture effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>mm²</td>
<td>kg/m</td>
<td>N/mm²</td>
<td>kN</td>
</tr>
<tr>
<td>10</td>
<td>51,8</td>
<td>41,6</td>
<td>91,7</td>
<td>1,23</td>
</tr>
<tr>
<td>11</td>
<td>63,6</td>
<td>56,6</td>
<td>12,6</td>
<td>11,45</td>
</tr>
<tr>
<td>12</td>
<td>74,9</td>
<td>66,7</td>
<td>132,6</td>
<td>13,48</td>
</tr>
<tr>
<td>13</td>
<td>87</td>
<td>77,4</td>
<td>154</td>
<td>15,65</td>
</tr>
<tr>
<td>14</td>
<td>100,1</td>
<td>89,1</td>
<td>177,2</td>
<td>18,02</td>
</tr>
<tr>
<td>15</td>
<td>116,9</td>
<td>104</td>
<td>206,9</td>
<td>21,04</td>
</tr>
<tr>
<td>16</td>
<td>132,2</td>
<td>117,5</td>
<td>233,6</td>
<td>23,75</td>
</tr>
<tr>
<td>17</td>
<td>148,5</td>
<td>132,2</td>
<td>262,8</td>
<td>26,75</td>
</tr>
<tr>
<td>18</td>
<td>167,8</td>
<td>149,3</td>
<td>297</td>
<td>30,2</td>
</tr>
<tr>
<td>19</td>
<td>189,8</td>
<td>169,8</td>
<td>336,9</td>
<td>34,16</td>
</tr>
<tr>
<td>20</td>
<td>208,8</td>
<td>185,8</td>
<td>369,6</td>
<td>37,58</td>
</tr>
<tr>
<td>21</td>
<td>232,3</td>
<td>206,7</td>
<td>411,2</td>
<td>41,81</td>
</tr>
<tr>
<td>22</td>
<td>255,2</td>
<td>227,1</td>
<td>451,7</td>
<td>45,94</td>
</tr>
<tr>
<td>23</td>
<td>277,3</td>
<td>246,8</td>
<td>490,8</td>
<td>49,19</td>
</tr>
<tr>
<td>24</td>
<td>299,4</td>
<td>266,5</td>
<td>529,9</td>
<td>53,89</td>
</tr>
<tr>
<td>25</td>
<td>323,5</td>
<td>287,9</td>
<td>572,6</td>
<td>58,23</td>
</tr>
<tr>
<td>26</td>
<td>349,3</td>
<td>310,9</td>
<td>618,3</td>
<td>62,87</td>
</tr>
<tr>
<td>27</td>
<td>377</td>
<td>335,5</td>
<td>667,3</td>
<td>67,86</td>
</tr>
<tr>
<td>28</td>
<td>404,9</td>
<td>360,4</td>
<td>716,7</td>
<td>72,88</td>
</tr>
<tr>
<td>29</td>
<td>437,8</td>
<td>389,6</td>
<td>774,9</td>
<td>78,8</td>
</tr>
<tr>
<td>30</td>
<td>467,7</td>
<td>416,3</td>
<td>827,8</td>
<td>84,19</td>
</tr>
<tr>
<td>31</td>
<td>497</td>
<td>442,3</td>
<td>879,7</td>
<td>89,46</td>
</tr>
<tr>
<td>32</td>
<td>529,2</td>
<td>471</td>
<td>936,7</td>
<td>95,26</td>
</tr>
<tr>
<td>33</td>
<td>560,5</td>
<td>498,8</td>
<td>992,1</td>
<td>101,89</td>
</tr>
<tr>
<td>34</td>
<td>492</td>
<td>526,9</td>
<td>1047,8</td>
<td>106,6</td>
</tr>
<tr>
<td>35</td>
<td>629,8</td>
<td>560,5</td>
<td>1114,7</td>
<td>113,36</td>
</tr>
<tr>
<td>36</td>
<td>671,6</td>
<td>597,7</td>
<td>1188,7</td>
<td>120,87</td>
</tr>
</tbody>
</table>

*Pour des diamètres supérieurs (jusqu’à 72 mm), nous consulter.

Câbles croisé ou long

- Pour pont roulants, pelles mécaniques grues à benne prenneuse.
- Est un câble à 8 torons extérieurs avec double parallélisme des éléments constituant le câble.
- A une imprégnation spéciale.
- A une grande flexibilité.
- A une charge de rupture supérieure.

Câbles extrêmement robustes pour ponts roulants, ponts de coulée, grue container, ponts stripper, ponts pits, portiques de déchargement, bennes prenneuses.

Câble avec 8 torons extérieurs.

Imprégnation spéciale.

Avec une infiltration plastique qui évite la déstructuration, les frottements et la corrosion intérieurs.

Extrêmement robuste

*Pour des diamètres supérieurs (jusqu’à 72 mm), nous consulter.

Fiches techniques des autres câbles CASAR disponibles sur notre site internet